创业失败教训

鱼菜共生app 杨辉:阳台种菜鱼菜共生,盒子农场20次失败后的重生

| 点击:

【www.xinchenghx.com--创业失败教训】

杨辉:阳台种菜鱼菜共生,盒子农场20次失败后的重生
鱼菜共生app 第一篇

  眼前一亮的鱼菜共生

  38岁的杨辉有着广州男人的特质——说话不疾不徐,喜欢享受生活。大学毕业后的10多年里,他一直在IT企业做程序员。职业的原因,他患上了“电脑综合征”,最有效的方法就是多看一些绿色植物。买回几件盆栽和小鱼缸,但疏于侍弄,往往是菜枯鱼死。

  2009年末,在美国、澳洲参观时,杨辉被“养鱼不换水,种菜不施肥”的鱼菜共生系统吸引。原理是,在一个封闭的无土环境中,建立鱼、蔬菜、微生物的循环链。相比传统种植,它最大的特点是能节约90%的用水量,并且种菜不用施肥喷农药,养鱼也无需换水……唯一的成本就是鱼食。根据英国鱼菜共生协会的数据,1斤鱼食,至少能生产50公斤蔬菜和1.5公斤鱼肉。

  回国后,杨辉和朋友成立了“都市农耕俱乐部”。但中国城市家庭只有几平米的阳台,办公室“舞台”更小。怎么办?杨辉设想,把它统统浓缩进“盒子里”。

  20次失败之后

  在制作“盒子农场”之前,杨辉查阅了大量资料,其中穆雷·哈勒姆出版的教程,被他视若珍宝。这是一位在圈子里鼎鼎有名的世界级“牛人”,被称为“农业传教士”。

  画图、找原材料,家中很快堆满了工具和配件,电钻、PVC水管、打孔器等,花了他两万多元。2010年3月,杨辉做出了第一套鱼菜共生系统。但一个月后,鱼死了,菜也枯了。

  为了找到适合中国气候环境的植物和鱼类,杨辉和伙伴们尝试了1年,普通菜、小白菜、袖珍椰子、吊兰、金鱼、罗非鱼……放进盒子农场做试验。他还到华南农业大学请教。但问题依然层出不穷,直到2011年6月,杨辉的第21件作品出炉:4个种植槽下面是一个鱼池,池里养着罗非鱼,池水带着鱼儿的排泄物被抽到旁边的植槽,瞬间就变成了植物的营养剂,被植物根系净化过的水,又重新放进鱼池。整套鱼菜共生装置看起来设计简单,由普通的PVC水管、抽水泵和塑料槽组成。占地4平方米,却能满足一家三口的吃菜问题!

  成功后,杨辉不由得和仅剩的3名研发伙伴相拥欢呼呐喊。他们最终取得胜利,打造出了属于中国人的“盒子农场”,并申请了专利。

  一年能节约几千元菜钱

  “我最骄傲的事,不是为多少500强企业编过管理软件,而是在4平方米的空间里种出了1200株植物!”2011年7月,杨辉带着他的“盒子农场”辞职创业。

  他与深圳一家电子机械公司签订合同,委托对方为其生产。随后,他把自己平时拍下的一些蔬菜生长照片传到网上

  但反馈意见随之而来,有人觉得500—2000元售价偏高;有人表示,外观不够漂亮;有不少人质疑:巴掌大的地方能种出多少菜来?

  随后,杨辉精简了设计,使产品外形不再臃肿凌乱,并为盒子农场穿上了漂亮的塑料外衣。后来随着生产量的提升,他把加工价格也压低了不少。至于顾客们的疑问,杨辉和同事们则在《产品使用手册》中,为消费者制订出了十分科学的换茬方案。

  春天种一些生长周期短的葱、小白菜、水萝卜、菠菜,养罗非鱼;夏天种迷你番茄、西葫芦,养鲈鱼,秋季种植红油菜、辣椒和黄瓜等等,还从国外引进了一些产量高的新奇特品种。如拳头大的南非佛手南瓜、日本早熟桃、颜色鲜艳的法国蓝侣菜和美国芫荽等,这些蔬菜不仅外观非常漂亮,有的瓜果造型还十分奇特。一季下来,一个“盒装农场”最多能产80多公斤果实,一年能节约几千元菜钱。

  用IT思维做大“创新农业”

  在经营上,杨辉这位IT男自有他的“互联网思维”:以便宜的价格卖“硬件”——鱼菜共生设备,然后长期卖“耗材”——根据四季变化,为顾客提供不需要泥土种植的菜种和鱼苗。并且,他们的服务有手机APP(应用软件),购买设备后的用户都会沉淀到手机APP上,用它来订购菜子和鱼苗。APP上还有社交系统,大家可以分享自己种了什么蔬菜,养了什么鱼,同一个小区之间还可以互相交换自己种植的蔬菜,分享自己的种植经验。

  2012—2013年,杨辉在一年时间内卖出了近3万套“盒子农场”设备,网上和线下客户遍布北上广深等各大城市,乃至北方的小县城。按折中售价每件500元计算,销售额达1500万元,杨辉的各项盈利总和不低于500万!

  相关知识:

 “养鱼不换水、种菜不施肥”

  是这样做到的

  ●所需材料:玻璃缸、饭盒、塑料花盆、水泥槽、可乐瓶、PVC水管

  ●工具清单:工兵铲、切割机、水壶、电钻、软管、气泵、墨线、水管连接件、打孔器、胶黏剂等

  ●种养原理:通过水泵将鱼缸里包含鱼粪等杂质的水输送到苗床,利用植物根系具有强大吸收、吸附能力的特点,让植物在吸收水中过量的无机盐作为营养源的同时,减少水中对鱼类生长有害的盐类。经过苗床过滤后的水通过虹吸排水流回鱼缸,从而实现“养鱼不换水”而无水质忧患、“种菜不施肥”而正常成长的生态共生效应。

  (注:工具在普通五金店都可找到)

  互动

  有问题想问?快来加入吧

  有志于当都市农夫的白领们,可在新浪微博关注“@广州市都市农耕科普基地”,与众多白领探讨种养知识。如果你想在公司成立都市农耕俱乐部分部,也可以寻求该组织的帮助。

  

池塘鱼菜共生养殖技术
鱼菜共生app 第二篇

  [农广天地]池塘鱼菜共生技术(20140813)

  随着水产养殖技术的不断发展,养殖密度的不断增加,池塘富营养化已经成为了制约水产养殖的一个瓶颈。以前人们主要靠微生物制剂来调节水质,但是成本太高。如今在重庆,有一种办法可以在减少微生物制剂使用的情况下,有效地缓解池塘富营养化的问题,这就是池塘鱼菜共生技术。池塘鱼菜共生技术很简单,它通过搭建浮床,然后种上空心菜。利用蔬菜来吸收水中的氨氮和磷等营养物质,从而达到净化水质的效果。池塘鱼菜共生技术是建立在以养鱼为核心的基础上,种菜的目的就是为了养好鱼。因此,种上菜的池塘仍然需要正常的管理,并且是一点都不能放松的。池塘鱼菜共生技术虽然很简单,操作也很方便,但是传达出的理念却很有价值,它对我国水产养殖的健康、可持续发展有着很大的借鉴意义。在本期的节目当中,就将向广大的观众朋友们介绍一下这池塘鱼菜共生技术。

  扩展阅读:

  鱼菜共生养殖技术是利用水生蔬菜扎根在养鱼水体中生长,使养鱼过程中产生的有害物、废物(养鱼产生的排泄物、剩余饲料、氨氮等)转化成蔬菜生长所需的养料,从而将水中的有害物质变害为宝,在使养鱼水体自然净化,水质保持长久稳定,提高鱼类的产量和品质的同时,还可以收获到一定量的水生蔬菜,它把水产养殖与蔬菜生产这两种原本完全不同的农耕技术通过巧妙的生态设计,达到科学的协同共生,从而实现养鱼不换水而无水质忧患,种菜不施肥而正常成长的生态共生效应,让鱼和蔬菜之间达到一种和谐的生态平衡关系。

  1 养殖池的选择   

  一般的精养池塘都可以。池塘要求保水性好,鱼产量亩产在800kg以上为好。池鱼放养模式结合当地养殖习惯即可,不用特意选择品种和模式。

  2 水生蔬菜的选择

  空心菜、水芹菜、生菜等常见的绿叶菜均可在水上安家,需大水大肥的丝瓜等也可种植。

  2.1 空心菜

  又叫蕹菜,旋花科、番薯属,一年生或多年生草本,以绿叶和嫩茎供食用,富含各维生素、矿物盐。在15-40℃条件下均能生长,在北方地区生长期5-10月,时间长、产菜期长。一般播种后35-45d开始采收,在初收期及生长后期,每隔7-10d采收1次,生长盛期5-7d采收1次。

  2.2 水芹菜

  水芹属于伞形科、水芹菜属,15-20℃生长最快,5℃以下停止生长,能耐-10℃低温;水芹菜含有丰富的多种人体不可缺少的营养物质,其产量高而稳,病虫害少,是无公害食品,天气条件影响不大,亩产量在3000-5000kg。

  2.3 生菜

  生菜是叶用莴苣的俗称,属菊科莴苣属。生长适温为15-20℃,最适宜昼夜温差大、夜间温度较低的环境,定植至采收为30-50d,北方地区生长期4-10月。

  2.4 丝瓜

  为葫芦科攀援草本植物,根系强大。有清凉、利尿、活血、通经、解毒之效。需大水大肥、可搭架立体利用水面以上的空间。

  3 栽种技术

  (1)蔬菜种植面积不超过养鱼水面的30%、不低于25%。(2)池塘里不能有龙虾和草鱼等食草的水产品种。(3)用竹子或做塑料管做浮筐,做成1m×2m或1m×4m的浮床,在浮筐上用聚乙烯网布作浮床的面和底,使其面[来源:

  4 日常的管理

  每天巡塘看鱼时同时检查蔬菜生长情况,定期采摘蔬菜。

  典型事例
  
  (1)2010年,重庆市引育种中心在水产养殖池塘水面上进行水生蔬菜种植,池塘水面栽种空心菜,不占地、不施肥、不用药,除浮架、菜苗外无其他成本,每亩栽种25%水面,全年产空心菜7125kg,每亩光蔬菜就可增加收入11880元。而水上种植空心菜后大大改善了水质条件,五月底空心菜生长前和六月底空心菜大量生长后,测得水质指标为:透明度由10cm增加到30cm,溶解氧由4mg/L提高到6mg/L,NH3由0.19ppm降低到0.16ppm,H2S由0.3ppm降低到0.15ppm,PH由6.4提高到6.8。

  (2)高淳县淳溪镇渭风村村民孙传跃,家中有10多亩养殖水面。在养殖池塘里进行水体养鱼水面种菜,亩产空心菜达4000kg左右,一年除水产外,光空心菜就挣了10多万元。

  (3)沅陵市2009年在陈家滩乡养鱼池塘水面上进行水生蔬菜种植。在1.2亩的养鱼水面上,收获鲜空心菜1.1万斤,平均亩产达4000多kg,平均亩获利1.5万多元。

樊伟:IT男专攻屋顶种菜推傻瓜式种菜系统
鱼菜共生app 第三篇

  图为:屋顶种菜箱里的蔬菜长势喜人 

   萝卜白白胖胖、生菜挤挤挨挨、上海青长势喜人、菜薹花儿招来蜜蜂……百余平方米的屋顶错落有致地安放着大小不一的绿色种菜箱,并配以自动灌溉系统、有机土壤、诱蚊灯等,毫无异味,环境清爽。

   这是10月12日,记者在光谷一座写字楼楼顶看到的一幕,此处是“哈哈农场”的首个样板工程。“我们也叫它懒人菜园,懒人都能学会种菜”,哈哈农场创始人樊伟在一旁介绍,在今年年初,他还是一名IT男,建农场也只是他的一个梦想。

  变屋顶为菜园

  IT人逐梦农业

   大学生樊伟生于1990年,2012年毕业于华中科技大学,今年1月放弃腾讯产品经理近20万的年薪,致力于自己的屋顶农业创业项目“哈哈农场”。

   在他看来,不少城市家庭用户都希望能有一片自家的菜园,吃得放心又是极佳的亲子活动场所;而当前雾霾严重[来源:

   腾讯产品经理的职业经历,让樊伟将“产品思维”也带进了农业。他介绍,团队中拥有21年农艺经验的老师傅等成员,针对不同作物几经调配,推出多种土壤,种菜箱亦是委托专业机构制成,满足用户对环境干净整洁的需求。

   樊伟说,目前国内其他三家同行多是靠卖种菜箱等硬件赚钱,而他们将仿照小米模式,面对防水及承重等方面符合要求的学校、工厂、办公楼或家庭楼顶,以“软件+硬件+互联网服务”相结合的方式,提供整体的“家庭菜园+屋顶农场”解决方案。

  推行“傻瓜种植”

  着重卖服务

   下月,哈哈农场的APP就将上市,“傻瓜式种菜系统”将构成——用户可通过APP选配存活率高、收成高的种子品类、种植计划,团队可提供上门实地安装服务,整个系统包括土壤、箱子、灌溉等,每平方米售价约980元,根据施工难度上下浮动。用户可以通过APP提示,实现免施肥、免打农药、自动浇水的“傻瓜式”种植。如果实在不会种菜,还可以到样板农场学习种植。整个种植过程经过大量优化,让从未种过菜的人也能轻易上手。

   樊伟介绍,团队未来将着重以服务盈利,如设计种植方案,提供菜园维护服务,售卖土壤、种子等消耗品,销售有机食品等周边产品。

   在创业前,樊伟曾做过调查,在武汉863平方公里的中心城区,至少有173平方公里为屋顶(以20%推算),“即便仅有10%的屋顶成为菜园,也是上百亿元的大市场”。7月26日,在农业·青桐汇的路演舞台上,90后、哈哈农场创始人樊伟如此讲述他的梦想,收获11张投资邀约函,成为当期最大亮点。

鱼菜共生app

鱼菜共生方案
鱼菜共生app 第四篇

鱼菜共生app 鱼菜共生app

为什麼鱼菜共生系统需要补充铁
鱼菜共生app 第五篇

為什麼魚菜共生系統需要補充鐵

一. 魚菜共生系統裡面鐵的問題

鱼菜共生app

鐵是植物裡面葉綠素的構成要素而葉綠素是植物進行光合作用的場所。 缺少足夠的鐵會導緻植物顯現新葉萎黃(初期葉脈仍顯現綠色)和生長遲緩的表徵。在魚菜共生系統裡的鐵一般以還原(去氧)的可溶性二價鐵(Ferrous Iron)和氧化的不可溶性三價鐵(Ferric Iron) 兩種形式存在. 前者可被植物吸收後者則否。 瞭解這點很重要因為當二價鐵在有氧環境中變成可溶性時往往很快被氧化成三價鐵或跟其它化合物反應使它無法被植物吸收, 尤其在高PH值的系統中會形成很多不同的氫氧化物。 這也是為什麼魚菜共生常常面臨缺鐵的問題即使系統裡面可能有很多的三價鐵存在。

把生鏽的鐵製品放進系統裡是否可以補充鐵的不足? 在某種意義上是可以增加系統裡面鐵的存量可是實際上幾無效果因為所增加的是植物不能吸收的三價鐵而系統裡面可能本來就存在很多。 那故意在植栽床裡面製造缺氧區塊期望系統裡的三價鐵被還原成二價鐵以利植物吸收是否有效? 這個就比較有說服力尤其是在低PH值的系統裡,可是這並沒完全解決如何讓還原狀態的二價鐵離子可以到達植物根系附近充滿氧氣的區域。

二. 如何解決缺鐵問題

螯合是魚菜共生系統裡面用以固鐵的方法。也就是說把不溶性的三價鐵(ferric)離子和化合物跟有機分子結合使其變成可溶性。螯合作用是藉由螯合劑的特殊有機分子來完成, 這些有機分子被設計來捕捉(或溶解)金屬離子, 鐵就是其中之一。在植物界裡螯合劑是由植物根部產生然後滲入土壤用以捕捉和傳送不溶性的鐵離子。這些化合物中最有效的是phytosiderophores (植物鐵載體), 它可以牢牢的綁住三價鐵離子, 把它們從各式不可溶解的沉澱物中拉出來。禾本科植物, 特別是大麥對於固鐵尤其有效。另一種由細菌合成的鐵載體

siderophores對於三價鐵也有很高的親合力。 其它常見的螯合劑有胺基酸, 有機酸(尤其是腐植酸)和多酚類。

雖然我們可以引進這些化合物到系統裡面也可以培養腐植酸溶液, 可是它們無法總是讓植物獲取足夠的鐵-尤其是在PH等於或大於7的系統裡面。因此需要人工合成的螯合劑來解決這個問題。幾乎所有的魚菜共生系統裡, 鐵是必須補充的養分之一, 而補充的方式就是添加螯合鐵- 就是把鐵鏈結在有機分子使其變成可溶解。螯合鐵是美國農業部有機標準所允許的添加物。

三. 螯合鐵的形式

最常見的螯合鐵有:

鱼菜共生app

FeEDTA: 有輕微毒性所以建議魚菜共生不該使用。這個形式的螯合鐵通常用做殺死闊葉雜草的除草劑。 不該使用的另一理由是它的有效範圍在PH6.4以下, 超過這個範圍它就變的不穩定。 所以說如果系統的PH經常維持在7的話, 則添加 Fe EDTA表示你可能會浪費很多錢。諷刺的是這是市面上最普遍販售和被魚菜共生所使用的螯合鐵的形式。

FeDTPA: 如果系統的PH經常維持在6-7.5 之間則我建議使用這個形式。

FeEDDHA: 如果系統的PH偏高經常大於7.5 (新系統較常見)則我建議使用這個形式。這個也是目前效果最好, 適用PH範圍最廣的螯合鐵形式。(註: 我試用過發現顏色紅的讓人擔心! 雖然魚兒並未有任何不適的情形)

四. 一般對添加螯合鐵的看法

一說是看到植物有缺鐵徵兆時就添加。這是合理的回應式添加方法, 可是終究在採取解決問題的行動之前植物已經遭受缺鐵的情形。植物的產量可能已經受到不利的影響。另一說(比較好)是定期每三個星期添加UVI系統的標準量2mg/L (註: 這是指鐵的濃度不是螯合鐵的濃

度。 一般螯合鐵會標明含鐵的比率)。如此定期定量添加則系統就不會有缺鐵的情況發生。鱼菜共生app

鐵肥也可經由葉面施用-使用低濃度的螯合鐵或是硫酸亞鐵噴灑。葉面施用雖然可以很快看到效用,可是因為鐵在植物體內不是可動性養分, 所以必須定期的噴灑-耗時且較無效率的方法。

鱼菜共生模式的优点及四种搭配模式介绍
鱼菜共生app 第六篇

鱼菜共生模式的优点及四种搭配模式介绍

鱼菜共生即有机结合水产养殖与蔬菜种植这两种原本完全不同的农耕技术,通过巧妙的生态设计,实现科学的协同共生。利用种植蔬菜来吸收转化水体二氧化碳产生氧气,同时鱼儿的排泄物以及饲料残渣等又可充当蔬菜生长的养料。这样,养鱼就可以不换水,种菜也可以不施化肥,一举两得就是这么简单!

这么伟大的发明到底是什么时候出现的呢?话说很久很久以前„„在古代,中国温江、泰国、印度尼西亚等东南亚国家就有了稻田养鱼的先例,稻田里养殖鲤鱼、鲫鱼、泥鳅、黄鳝、田螺等,这就是古人们创造出来的古代“鱼菜共生”模式,距今已1000多年。

现在我们所说的鱼菜共生,虽然发源于古代的稻田养鱼,但却具备了相当科技含量。当鱼儿遇上了蔬菜,会发生什么样的故事呢?近年来,国内多位水产人在池塘开展过一些试验,发现下列四种种养模式可以让鱼儿和蔬菜更愉快地生活在一起:

1、直接漂浮法:这个最简单,用泡沫板等浮体,直接把蔬菜苗固定在漂浮的定植板上进行水培。

2、养殖水体与种植系统分离:两者之间通过砾石硝化滤床连接,养殖排放的废水先经由硝化滤床的过滤,再循环利用作为滴灌湿地种植植物的营养液,经由蔬菜吸收后又从湿地经水生植物净化水,再次返回养殖池,形成闭路循环。

3、 养殖水体直接与灌溉系统连接:养殖区排放的废液直接以滴灌的方式循环至栽培容器,经过滤后废水又返回养殖水体。

4、水生蔬菜系统:这种方式就如中国传统的稻田养鱼,不同之处在于养殖与种植是分离式共生。什么叫分离式共生呢?就是把养殖池的水直接排放农田,经农田土壤植被等处理后,再从另一端返回到养殖池。

上述方式种菜也是有讲究的,最好选择适合水生的经济蔬菜,如空心菜、水芹菜和竹叶菜等。空心菜是鱼菜共生的首选哦,因为空心菜生长快,产量大,对池塘过滤净化的效果是极好极好的。

鱼菜共生系统介绍
鱼菜共生app 第七篇

鱼菜共生技术及系统工程研究
鱼菜共生app 第八篇

鱼菜共生技术及系统工程研究

张明华,丁永良,杨菁,... - 《现代渔业信息》 - 2004 - 被引量: 11

摘 要: 鱼菜共生是运用生态学原理和环境条件监控手段建立起来的可持续设施渔业新技术.研究涉及养殖水系营养物质循环流动.本文探索了氨氮、酸碱度、溶氧、温度等因子对鱼菜不同生长阶段的影响,总结出不同密度鱼类与不同种类、不同生长阶段蔬菜之间的优化配比关系.并就鱼菜共生系统工程研究设计的模式进行论述.

鱼菜共生技术 / 可持续设施渔业 / 系统工程 / 高密度工业化养鱼 / 无土栽培 / 生态农业

鱼菜共生技术培训教材
鱼菜共生app 第九篇

内部资料一

鱼菜共生技术培训教材

徐伟忠编

浙江省丽水市农科所农业智能化快繁中心

目 录

鱼菜共生技术 ............................................................................................................................... 3

鱼菜共生的发展历史及背景 ................................................................................ 3

鱼菜共生系统中物种间的生态关系 .................................................................... 4

鱼菜共生技术的商业化模式 ................................................................................ 7

一、

二、 养殖部份 ........................................................................................... 7 种植部份 ........................................................................................... 8

以基质栽培为主的鱼菜共生系统 .......................................................... 8

NFT循环为特征的鱼菜共生系统 ......................................................... 9

以气雾培的空间设计为特点的共生系统 ............................................ 10

以浮板栽培为特点的共生系统 ............................................................ 10

水柱状设计的共生系统 ........................................................................ 11鱼菜共生app

与污水处理结合的共生系统 ................................................................ 12

三、微生物处理: ....................................................................................... 12

庭院式的鱼菜共生模式 ...................................................................................... 15

一、

二、

三、

四、

五、

六、

养殖桶的建设, ............................................................................. 16 硝化过滤桶与床 ............................................................................. 16 气雾栽培与NFT系统的结合运用 ............................................... 17 辅助技术的建造 ............................................................................. 17 日常的管理: ................................................................................. 17 庭院式鱼菜共生系统 ..................................................................... 18

(a)

第 II 条 鱼菜共生技术

养鱼种菜原本是两项分离的农业技术,但采用鱼菜共生方法实现了两者间的互作组合,形成了共同促进与效益叠加的效果,同时更重要的是,它是一项综合效益最高的纯有机耕作模式,种菜不需再施肥,养鱼不需常换水,是一种资源节省型的可循环有机耕作模式,鱼排泄的废水及饲料残渣是蔬菜生长的最好养料,而蔬菜的根系与微生物群落又是水质处理净化的最佳生物过滤系统,三者所建立的植物---微生物---鱼生态关系实现了养鱼种菜的可持续与循环,是生态农业中一种最完美的结合。

当前农业生产资源也日渐匮乏,土地资源,淡水资源,可利用无污染的农业资源也将越来越少,农业生产面临着生态与资源的危机,如水的污染让很多水体的鱼虾资源面临危害,更不能进行生产性的规模化养殖,而种菜也因化肥的大量运用导致土壤严重之退化,可持续性成为当前农业生产的主要问题。而鱼菜共生模式是结合了工厂化养殖与无土栽培蔬菜技术,是高科技的有机结合所形成的边缘优势与综合累加效益,比单独的养殖与种菜更省空间与资源,更省设备与成本管理投入。更为重要的是生产的蔬菜与鱼皆为有机鱼与有机蔬菜,在市场上极具竞争力,是符合现代食品消费趋势的一种最好生产模式。

节 2.01 鱼菜共生的发展历史及背景

鱼菜共生技术听似好像是一项全新的技术,但如果从它的特点进行分析,其实早在我国1500年前的古代农耕技术中就可以找到它的存在与痕迹。就是笔者孩提时,都有深刻的记忆,就是时常拿着网兜或畚箕到水稻田的沟里或水边的丛草间茭白丛中捉鱼,而且是自然生长的鲫鱼、小鲤鱼、泥鳅、鳝鱼等,有时凑巧还会捉到鲶鱼。这种看似自然农业群落所形成的自然生态共同体,其实它就是鱼菜共生的最朴素与原始的绉形。不管是鱼粮共生、还是鱼草共生以及鱼茭共生,其实都是与植物形成的共生体,蔬菜与植物本生不存在实质性区别,只有人们利用用途不同而进行了区分,它们的生态关系与共生促进原理都是相同的,这就是鱼菜共生技术形成的启示吧,无非它是鱼与水生植物的自然共生过程。还有一种朴素的鱼与植物的共生体就是,在自然水体的池塘进行养鱼与放养鸭子,利用淤泥与池塘水培肥庄稼,这种从实质分析也是一种朴素的共生关系,无非就是没有现代鱼菜共生技术那么直接与一体化而已。前者是鱼与水生植物间建立共生关系,后者是与陆地的庄稼建立了共生关系,这种关系的建立是基于植物自然生态基础上所形成的,它因植物的特性而限制了它跨越性的直接共生,而现代无土栽培技术则可以让所有植物都统一到水中生长与栽培,这样就打破了植物及立地的屏障,直接把植物与鱼整合到同一的一体化的水系统中,就形成了现在直观的鱼菜共生系统。

那么,我们看近代的鱼菜共生技术发展史,也可以从中追寻到该技术的发展踪迹,上世纪九十年代我国生态农业开始兴盛时,许多地方就开始推广稻萍鱼系统,萍作为鱼的饲料,而鱼的排泄物又成为肥田的有机养分,三者间的关系也是一种生态共生关系,直到现在,如浙江省丽水市青田县龙现村已把稻田养鱼技术申报世界遗产保护,并在周边一带大面积发展该产业,这是鱼与植物共生最成功的技术范例,其实推而广之,水稻是适水性强的植物能直接在水中生长,所以它最有可能在生产中被农民所利用,但现代科技可以实现所有植物的水生栽培,这就自然把这技术嫁接到其它的经济植物或粮食作物之上,形成了以水培技术为支撑的新时期鱼菜共生体,只要把蔬菜改成水培即可。还有较为常见的就是荷鱼共生,在荷田里放养鱼,也同样实现共生互利关系,其实鱼与植物的共生是一种自然的

生态系统,到处可以见到它的存在。自然是最伟大的老师,人类在认识自然的同时,会结合智慧衍生出基于自然而超于自然的自然改造新模式,就是就科技的进步与发展。那么鱼与植物或者菜的共生是不是就是完全自然的翻版与搬用呢,这种自然的模式虽然有良好的生态共生关系,但它的生产效率较低,难以在生产上作为高效型农业推广使用。于是,人们又得找到一个新的结合点或突破点来完善与提高这种朴素的自然模式。这又得从当前水资源的匮乏及生态危机的角度出发,为鱼菜共生系统的完善发展创造了诞生的条件与必然。工业发展,城市化推进,以及生态破坏环境污染,使水资源成为当前人类最为宝贵的资源,特别是无污染的水更是不可多得的财富。农业生产中养殖业是用水量较大的产业,而且是以池水或自然水体为生产场所,它的生产性污染也是极大,再加上工业污染与化肥农药的污染,就使水成为地球污染的重要传播者,如养殖水的污染是富营养化造成的水质恶化,与地面径流造成的二次生物污染;河水地下水湖泊等养殖水,又因化肥农药的大量使用及工业空气污染或排液对自然水体造成了极大的污染,而这些水又成为鱼养殖的水休环境,从而又导致鱼产品的终极污染,所以现在看似许多地方有丰富的淡水资源,但许多水体已不再适合鱼的养殖。于是,人们开始进行环境相对可控型的工厂化养鱼的研究,以提高单位鱼体的用水量减少珍贵水资源的利用提高生产率与降低养殖废水的污染面。从上世纪九十年代起工厂化养鱼技术在许多地方掀起,但最终未能得以推广,这主要是与其投入大,运行成本高,设备设施要求较等等因素,而未能让他得以普及,行别是养殖水的循环运用过程中,要涉及较多的水处理设备,而且这些工业设备大多是投入在运行成本高的水质净化设备,让许多有兴趣的农民望而却步。既然自然朴素的共生关系给我们以启示,那么能不能把工厂化的养殖技术与蔬菜种植技术进行有机嫁接紧密结合呢?在上个世纪七十年代发达国家的美国就进行了新的偿试与探索,形成了较为原始但又有一定科技含量与实用性的简单共生生产系统。通过近四十年的发展与各国的不断努力,当前的鱼菜共生技主已形成了一套完整的理论与实践操作体系,我国也在各方面专家的努力下,正在研究与探索适合我国国情的新型鱼菜共生系统。现在就以我国的研究水平与状况,对鱼菜共生技术在生产上的运用提出一些新的模式与技术,并不断地实践形成可以产业化的工厂化模式。估计不久将来,这项技术也会在我国现代农业发展与农业工业化的过程中得以广泛运用。以下就鱼菜共生的技术理论与实践体系进行介绍,供生产得参考与运用。

节 2.02 鱼菜共生系统中物种间的生态关系

从自然模式的表观认识,我们认为这种共生是简单的鱼与植物间的共生,其实是种错误的表象认识,在嫁接鱼与植物之间需要一种最为重要的结合体,那就是微生物。因为在自然生态系统中,微生物是有机物的终极分解者,只有通过微生物的分解转化才能让物质与能量参予到下一生态链的循环。在鱼与植物间,鱼的排泄物要让植物吸收,必须先在微生物的作用下进行分解,把这些大分子有机物质分解为矿化的简单元素或小分子特质,才能被植物的根系通过离子交换的方式吸收利用。所以说看不到的微生物是功劳最大的结合体,没有它共生的生态关系就难以形成。

那么水体中的微生物很多,分为有益的与无益的,大多好氧的微生物对鱼及植物的生长是有益的,而且同样有较高的分解转化能力,而较多厌氧的微生物虽然也能分解转化,但它的效率较低,而且中间产物形成物质较多,对水质污染危害较大,对鱼的生长会造成不良的影响。所以培殖有益微生物的生态种群来抑制有害微生物,让水体与系统生态在有益微生物占主体的环境下运用,对植物与鱼共说都是一种很好的生态促进。

现在就先从微生物生态的建立开始叙述,微生物种类很多,而且相互间也有一种共生共赖的关系,与相互抑制的关系存在,如何认识有益微生物并且让各种微生物间形成强势的共生关系,建立微生物微生态关系的平衡,在这方面近年研究较多,而且也已在生产的种养殖业加工业上得以运用,在鱼菜共生系中,最为常见的有益共生微生物有以下几种:硝化菌、光合菌、酵母菌、乳酸菌、及线状菌等,它们之间的共生可以保持相对较长的平衡与稳定状态,也就是光合菌产生的物质与能量可以成为其它菌的生存条件与原料,这样就可以在环境有机物较少的情况下通过光合菌的光合固定来完成初始生存

能量的提高,就可以让它们在一个相对缺乏营养源的环境下保持较长的稳定平衡关系,相互间能共生共营较长的时间,这也就是微生态间物种平衡关系对生态建立的重要性体现,这样的微生物组合可以在自然界或生产上保持较长时间的强势生态群落,从而对有害微生物产生抑制,让接种该微生物菌落的生境能保持较好较长时间的良性状态,这对于环境治理来说也具有极广阔的运用前景,所以近年利用有益微生物用于环境治污保持净化水质,及预防废物废液污染来说具有良好的效果。同样利用有益微生物的强势生态特性来抑制病源或有害微生物的滋生,在生产上用于提高植物抗病性,以及养殖业上动物的抗性来说是极具前景的一项微生物工程。在鱼菜共生系中,利用有益微生物接种水体,可以净化水质同时还可以让鱼的抗病性提高,以及共生植物生长更好,抗病虫能力更强,从而可以在不需任何药物激素的处理下完成自然生态型的共生生产。

植物生态适应性的建立,植物在土壤里生长并形成了适于土壤的生理生态适应性,这是环境与进化的结果,而鱼菜共生技术大多采用的是水培或气雾栽培模式,蔬菜植物同样具有广泛的适应性,而且在生理生态上也会作出适应性的改变,性状将更趋同于水生植物,更利于水质的过滤净化与对营养的吸收。在水生诱变技术中我们已经提及到所有植物的广泛生态适应性的存在,所有植物都是由水生进化为陆生,所有植物又都可以通过人工驯化而返回到水生环境进行水生长栽培。在鱼菜共生的生态系中,其实就是一个完全的水生态环境,如何让植物适应与鱼之间建立共生关系,在技术上有哪些相应措施呢?植物的生态适应性是以环境为动力所形成的生理生态的变化与适应,而蔬菜品种大多是与水生植物亲缘较近的类型,它在萌芽生长过程中,初出的根系大多为水生根系,而且只要保持适合的高湿环境,可以在较长的时间保持水生根性状,根据这一点原理,我们可以利用种子直接播种于水栽培系统中,让它从萌芽后就自然过渡到水生状态,如果需要播种移栽培可以采用无土育苗法,并且保证苗期的基质有相对高的水份湿度以及适时移栽,就可以把蔬菜的根系发育成完全的水生根系,而且是须根根系,更具水生性与更好的过滤净化功能。在水与气雾环境中,根系可以发育得比土壤栽培数量更多,须根吸收根更发达,根系活力更强,大多可以保持较长时间的洁白状态,从而可以发挥更好的直接吸附净化与快速高效吸收的作用,比土壤生态更适于蔬菜植物之生长与更佳的净化功能发挥。其实能实现陆生蔬菜植物与鱼水共生,关键也是植物水生态适应性的充分体现与运用。

鱼生态适应性的建立,在自然界中,鱼与水体浮游生物,水草等之间形成良好的生态关系,所以大多野生的非人工鱼生态群落,大多都能保持健康的富有活力的生长状态,少有病害的发生,而且肉质鲜美无污染。而在高密度养殖的人工生态系中,水体环境及浮游生物种群等都发生了较大变化。特别是水中的氨氮、硝酸盐、亚硝酸盐、硫化物、二氧化碳等都因高密度养殖而使水中的溶量倍增,同时氧气含量因鱼及生物耗养而倍减,鱼在这样的生态环境下不仅会导到氨中毒引起的各种病害与死亡,也会因生物耗氧过盛而致缺氧浮头或翻塘的发性,在这样的环境下,鱼不令摄食下降影响生长,还会导致鱼病暴发而死鱼。如何为鱼生长建立适合的生态环境,就是鱼菜共生要解决实现的主要问题。首先高密度养殖人工饲喂而使水质中悬浮的饲料残渣或者粪便积累,造成水质的有机污染,这些有机物的处理净化是保持鱼适生态与良好水质之关键,否则会因积累而最终恶化水质影响生长。固态有机物的去除可以采用物理过滤法从水中去除,在鱼菜共生系中可以设计基质培系统,让水流经颗粒状的固态无土基质而滤去残留悬浮之有机物,这些吸附在固体颗粒表面的有机物,在微生物作用下分解为简单的小分子物质或者矿质元素,其中的氨态氮则在硝化菌的作用下,转化为硝酸盐类而成为植物生长吸收的最佳氮肥,从而减少了循环水的氨氮指标。在生产上为创造良好的水体生态环境,还结合往水体中接种有益微生物种群技术,以加速水体中有机物分解与物质之转换,从而大大加快吸收净化的过程,为鱼生态创造一个无害化的化学生态环境。水体中的二氧化碳是鱼呼吸所释放,如果水体溶解达到一定程度也会造成对鱼的不利影响及水体酸化。而在鱼菜共生的循环及雾化栽培过程中,这些硫化物或者二氧化碳就会以气体的状态得以挥发而提高了整个环境的二氧化碳浓度,对生长着的蔬菜来说又是最好的气肥。另外,水体生态环境因有有益微生物的接种滋生使有害微生物得以抑制,同时,微生物及植物的中间代谢产物或分泌物中,许多物质又是提高鱼儿抗性的活性物质与抗生素,这样也对鱼生态的改善起到了促进作用。除了上述提及的化学指标可以通过生化调控得以建立稳定的水生态

本文来源:http://www.xinchenghx.com/chuangyegushi/54121/